
Initial profiling and optimization of single-bunch
performance in Synergia 2.1

James F. Amundson
Fermilab, Batavia, IL 60510

Draft 05/26/2011

Abstract

I describe simple profiling and preliminary optimization results for a Synergia 2.1 space charge cal-
culation. My results include a study of MPI collective performance in OpenMPI and MVAPICH2. By
optimizing some of the local code and implementing and utilizing a dynamics routine to determine the
optimal collective routines at runtime, I have improved peak performance of Synergia 2.1 by a factor of 1.7
for a benchmark problem. I intend these optimizations as a starting point for future, more involved efforts.

1 Introduction

Since Synergia 2.1 contains all-new performance-critical code, profiling and basic performance optimization
are important steps to be made before the code reaches production. I describe here a set of profiling exercises
of a space-charge calculation using Synergia 2.1 on a Linux cluster. As a result of the profiling, I was able
to perform some optimization steps on the largest time-consuming portions of the code. As a result, I have
improved the peak performance by a factor of ∼ 1.7. See Figure 1.

2 The benchmark

I used the cxx_example benchmark for all results in this document. The benchmark uses the Hockney solver
and allows for variable problem sizes. The nominal size for this exercise is a 64× 64× 512 space charge
grid with 10 particles per cell for a total of 20, 971, 520 particles. There are 32 evenly-spaced space charge
kicks. The single-particle dynamics use second-order maps.

I performed all benchmarks on the intel12 nodes of the Fermilab Wilson Cluster (http://tev.fnal.
gov/index.shtml). The cluster consists of Intel dual-socket six-core (total 12 cores) Xeon 64-bit X5650
"Westmere" 2.67 GHz nodes connected by single data rate (10 Gbps) Infiniband interfaces. The cluster
runs Scientific Linux 5.5. I used the native GCC (version 4.1.2) with the basic -O3 optimization flag.

3 Profiling

Synergia 2.1 contains some simple profiling code available as a compile-time option. The code can be turned
on with, e.g.,

cmake −DUSE_SIMPLE_TIMER=true .

The profiling code uses MPI_Wtime to calculate the execution time of various portions of code on the
processor with rank 0. The benchmark program also calculates the total time for the propagate command,
whether or not profiling is enabled. With profiling enabled, the propagate time can be used as cross-check
to ensure that no significant portions of code are not being profiled.

The simple profiling is as non-intrusive as possible. One limitation of this approach is the possibility
that the time reported on processor 0 for collective communications significantly underestimates the time

1



2-1 20 21 22 23 24

nodes

102

tim
e 

[s
] best pre-opt: 74.9

best post-opt: 45.0

(not optimized) 8 cores/node openmpi
(not optimized) 12 cores/node openmpi
(optimized) 8 cores/node openmpi

Figure 1: Executive summary: Synergia 2.1 performance before and after the optimization steps described
in this document.

for the entire cluster to complete a collective operation. The end result would be an over-reporting of
the next operation that includes a simple collective. I believe this effect is occurring in some of the later
benchmarks in this paper. A more accurate approach will be necessary in subsequent work.

Figure 2 shows the profiled breakdown of the 8 core/node OpenMPI case. Only the routines that ac-
count for > 3 percent of the total on the number of cores corresponding to the best performance (64, in this
case) are shown. The sum of the remainder are accounted for in the “other” category.

The labels have the following meanings:

sc-get-local-rho The charge deposition step (local).

sc-get-global-rho The charge density communication step (global).

sc-get-phi2 The field calculation, including two forward FFTs, a convolution and one inverse FFT (global).
The communication in the parallel FFT is included in this step.

sc-get-global-en The field communication step, in reality the sum of three steps for the three field compo-
nents (global).

sc-apply-kick The field application step, in reality the sum of three steps for the three field components
(local).

Based on these results, I decided to focus on the most important routine for small numbers of cores, kick
application (sc-apply-kick in the figure), and the most important obstacles to scaling, charge collection and
field distribution (sc-get-global-rho and sc-get-global-en, respectively.)

4 Optimizing kick application

In analyzing the kick applications routines, I found that each kick required multiple function calls in addi-
tion to some unnecessary repeated extraction of data. Furthermore, the kick routines require sampling the

2



23 24 25 26 27

cores

101

102

tim
e 

[s
]

total
sc-get-global-rho
independent-operation-aperture

sc-get-phi2
sc-get-global-en
sc-apply-kick

sc-get-local-rho
other

Figure 2: Initial code profile showing routines accounting for at least three percent of total time in the fastest
case.

large field data array at different locations for each particle, which must result in cache misses. Finally, the
grid application step requires repeated calls to the C function floor, which is known to be slow. I took the
following optimization steps:

1. Minimize the number of data extractions, e.g., retrieval of the grid shape.

2. Minimize the number of function calls.

3. Inline all the remaining functions.

4. Add a periodic sort of the particles along the z-axis, in order to make accesses to the field data array
more localized. The sorting routine utilizes std::sort.1

5. Add a faster version of floor (fast_int_floor.)

These five steps combine to produce an overall speedup of the kick application routines by a factor of∼ 1.9,
as shown in Figure 3.

5 Optimizing communication steps

The charge collection and field distribution communication steps are the biggest barrier to scalability. In
order to study the optimal way to perform these steps I considered different combinations of MPI collectives
for each routine. I also compared the performance of OpenMPI 1.4.3rc2 vs. MVAPICH2 1.6. Finally, I
considered the performance differences between using all 12 cores on each node vs. using only 8 cores per
node.

For the charge collection step, I considered two methods:

1Thanks to J. Kowalkowski for supplying the necessary adapter code to allow for a simple call to std::sort.

3



23 24 25 26 27

cores

100

101

tim
e 

[s
]

kick time before optimization
kick time after optimization

Figure 3: Kick application time before and after optimization

Reduce scatter The method used in the original version of the code. The MPI command MPI_Reduce_scatter
is used to place the relevant portion of the charge density on the nodes where needed for the parallel
field calculation.

Allreduce The MPI_Allreduce command is used, which results in much redundant information being
made available to each processor.

For the electric field distribution, I considered three methods:

Gatherv Bcast The method used by the original version of the code. The MPI command MPI_Gatherv
collects the electric field on one processor. The MPI command MPI_Bcast then broadcasts the entire
vector to all processors.

Allgatherv The MPI command MPI_Allgatherv is used to assemble the field on all processors.

Allreduce A field variable is created with all zeros, then the calculated portion on each processor is in-
serted. The MPI_Allreduce command is used to sum the result which is then correct on each proces-
sor.

The relative speed of the various methods has a non-trivial dependence on number of cores and MPI im-
plementation. Note that the timings in this section were surrounded by calls to MPI_Barrier, so they do not
suffer from the simple timer limitations discussed in Section 3. Figures 4, 5, 6, and 7 show the timing results
for various combinations of variables.

No single communication routine wins in all cases. I decided to leave all five communication patterns in
the code as a runtime option. I also added the method auto_tune_comm to test the available communication
routines at runtime and select the best option for the given conditions. I used auto_tune_comm for the final
results.

4



23 24 25 26 27 28

cores

10-2

10-1

100

101

tim
e 

[s
]

reduce_scatter 8 cores/node
allreduce 8 cores/node
reduce_scatter 12 cores/node
allreduce 12 cores/node

20 21 22 23 24

nodes

10-2

10-1

100

101

tim
e 

[s
]

reduce_scatter 8 cores/node
allreduce 8 cores/node
reduce_scatter 12 cores/node
allreduce 12 cores/node

Figure 4: OpenMPI charge collection performance as a function of number of cores (left) and nodes (right).

23 24 25 26 27 28

cores

10-2

10-1

100

101

tim
e 

[s
]

reduce_scatter 8 cores/node
allreduce 8 cores/node
reduce_scatter 12 cores/node
allreduce 12 cores/node

20 21 22 23 24

nodes

10-2

10-1

100

101
tim

e 
[s

]
reduce_scatter 8 cores/node
allreduce 8 cores/node
reduce_scatter 12 cores/node
allreduce 12 cores/node

Figure 5: MVAPICH2 charge collection performance as a function of number of cores (left) and nodes
(right).

23 24 25 26 27 28

cores

10-2

10-1

100

101

tim
e 

[s
]

gatherv bcast 8 cores/node
allgatherv 8 cores/node
allreduce 8 cores/node
gatherv bcast 12 cores/node
allgatherv 12 cores/node
allreduce 12 cores/node

20 21 22 23 24

nodes

10-2

10-1

100

101

tim
e 

[s
]

gatherv bcast 8 cores/node
allgatherv 8 cores/node
allreduce 8 cores/node
gatherv bcast 12 cores/node
allgatherv 12 cores/node
allreduce 12 cores/node

Figure 6: OpenMPI field distribution performance as a function of number of cores (left) and nodes (right).

5



23 24 25 26 27 28

cores

10-2

10-1

100

101

tim
e 

[s
]

gatherv bcast 8 cores/node
allgatherv 8 cores/node
allreduce 8 cores/node
gatherv bcast 12 cores/node
allgatherv 12 cores/node
allreduce 12 cores/node

20 21 22 23 24

nodes

10-2

10-1

100

101

tim
e 

[s
]

gatherv bcast 8 cores/node
allgatherv 8 cores/node
allreduce 8 cores/node
gatherv bcast 12 cores/node
allgatherv 12 cores/node
allreduce 12 cores/node

Figure 7: MVAPICH2 field distribution performance as a function of number of cores (left) and nodes
(right).

6 Final results for the medium-size problem

Figures 8, 9, and 10 show the results of the optimization steps described above for the medium-size prob-
lem.

7 Optimized results for a large problem

The large problem is defined as a 128× 128× 1024 grid with 10 particles per cell for a total of 167,772,160
particles.

8 Optimized results for a small problem

The small problem is defined as a 32× 32× 256 grid with 10 particles per cell for a total of 2,621,440 particles.

9 Optimized results for a small problem with many particles

The small problem with many particles is defined as a 32× 32× 256 grid with 10 particles per cell for a total
of 26,214,400 particles.

6



23 24 25 26 27

cores

101

102

tim
e 

[s
]

8 cores/node openmpi
12 cores/node openmpi
8 cores/node mvapich
12 cores/node mvapich

Figure 8: Final result for the medium-size problem as a function of number of cores.

2-1 20 21 22 23 24

nodes

102

tim
e 

[s
]

8 cores/node openmpi
12 cores/node openmpi
8 cores/node mvapich
12 cores/node mvapich

Figure 9: Final result for the medium-size problem as a function of number of nodes.

7



23 24 25 26 27

cores

101

102

tim
e 

[s
]

total
sc-get-global-rho
independent-operation-aperture

sc-get-phi2
sc-get-global-en
sc-apply-kick

sc-get-local-rho
other

Figure 10: Final (optimized) code profile showing routines accounting for at least three percent of total time
in the fastest case.

22 23 24

nodes

102

103

tim
e 

[s
]

8 cores/node openmpi
12 cores/node openmpi
8 cores/node mvapich
12 cores/node mvapich

Figure 11: Optimized results for the large problem as a function of number of nodes.

8



25 26 27

cores

101

102

103

tim
e 

[s
]

total
sc-get-global-rho
independent-operation-aperture

sc-get-phi2
sc-get-global-en
sc-apply-kick

sc-get-local-rho
other

Figure 12: Profiling breakdown for the 8 cores/nodes MVAPICH2 case

2-1 20 21 22 23

nodes

101tim
e 

[s
]

8 cores/node openmpi
12 cores/node openmpi
8 cores/node mvapich
12 cores/node mvapich

Figure 13: Optimized results for the small problem as a function of number of nodes.

9



23 24 25 26

cores

10-1

100

101
tim

e 
[s

]

total
independent-operation-apply
sc-get-global-rho

independent-operation-aperture
sc-get-phi2
sc-get-global-en

sc-apply-kick
sc-get-local-rho
other

Figure 14: Profiling breakdown for the 8 cores/nodes MVAPICH2 case

20 21 22 23 24

nodes

101

102

tim
e 

[s
]

8 cores/node mvapich
12 cores/node mvapich

Figure 15: Optimized results for the small problem as a function of number of nodes.

10



23 24 25 26 27 28

cores

10-1

100

101

102

tim
e 

[s
]

total
independent-operation-apply
sc-get-global-rho

independent-operation-aperture
sc-get-phi2
sc-get-global-en

sc-apply-kick
sc-get-local-rho
other

Figure 16: Profiling breakdown for the 8 cores/nodes MVAPICH2 case

11


